

SOMMAIRE
• Introduction – Concept de facteur d'intensité des contraintes K
Modes de sollicitation des fissures
Approche de Westergaard
• Expression des champs de contrainte et de déplacement
• Définition du FIC K et expressions des champs de contrainte et de déplacement
Mode de cisaillement anti-plan
Principe de superposition
Zone plastifiée à fond de fissure
Méthodes pratiques de calcul du FIC – Méthode des fonctions poids
Ténacité - FIC critique
Approche énergétique de Griffith
Relation entre énergie de Griffith et FIC K
A. Zeghloul CFMR Intensification des contraintes à l'extrémité des fissures 2

Le champ de déplacement des lèvres de la fissure en amont de l'extrémité A' s'écrit :

$$u_{y}(r, \theta = \pi) = \frac{K_{I}}{\mu} \sqrt{\frac{2r}{\pi}} (1 - \upsilon^{*}) \text{ avec } \begin{cases} \upsilon^{*} = \upsilon & \text{en déformations planes} \\ \upsilon^{*} = \frac{\upsilon}{1 + \upsilon} & \text{en contraintes planes} \end{cases}$$
Pour déterminer le taux de restitution d'énergie ou énergie de Griffith *G*, il est plus pratique de calculer le travail de régression de la fissure de la position *A*(*x* = *a*), autrement dit de considérer le travail nécessaire pour refermer les lèvres de la fissure.
La force appliquée aux lèvres de la fissure est $\sigma_{y}(r)edx$ avec $r=x-a$.
Le déplacement en $r'=a+\Delta a \cdot x$ est $u_{y}(r')$.
Le travail de régression est donné par :
 $\Delta W' = -\Delta U = 2 \int_{a+\Delta a}^{a} \frac{\sigma_{y}(r)u_{y}(r')}{2} dx$

Azeghiou EtME Intensification de sontraintes à l'extrémité des fissure de fissure de la fissure

$$\begin{bmatrix} \sigma_{y}(r,\theta=0) = \frac{K_{I}}{\sqrt{2\pi r}} \end{bmatrix} \qquad u_{y}(r,\theta=\pi) = \frac{K_{I}}{\mu} \sqrt{\frac{2r}{\pi}} (1-v^{*})$$

$$\Delta W' = -\Delta U = 2 \int_{a+\Delta a}^{a} \frac{\sigma_{y}(r)u_{y}(r')}{2} dx = \frac{K_{I}^{2}}{\mu} \cdot \frac{1-v^{*}}{\pi} \int_{a+\Delta a}^{a} \sqrt{\frac{a+\Delta a-x}{x-a}} dx$$
Pour calculer l'intégrale (a), on effectue le changement de variables suivant :
$$\frac{\Delta a}{x-a} = X \Rightarrow dx = -\frac{dX}{X^{2}} \Delta a \text{ et } \begin{cases} x=a \Rightarrow X=\infty \\ x=a+\Delta a \Rightarrow X=1 \end{cases}$$
L'intégrale (a) devient alors I = $\Delta a \int_{1}^{\infty} \sqrt{X-1} \left(-\frac{dX}{X^{2}}\right)$ que l'on intègre par parties en posant :
$$\begin{cases} a = \sqrt{X-1} \Rightarrow da = \frac{dX}{2\sqrt{X-1}} \Rightarrow I = \Delta a \begin{cases} \frac{\sqrt{X-1}}{x} \int_{1}^{\infty} -\int_{1}^{\infty} \frac{dX}{2X\sqrt{X-1}} \end{cases}$$
Azephoi

$$I = \Delta a \left\{ \underbrace{\left[\frac{\sqrt{X-1}}{X}\right]_{I}^{o}}_{-0} - \int_{1}^{o} \frac{dX}{2X\sqrt{X-1}} \right\} \qquad I = \Delta a \Big[-Arctg \sqrt{X-1} \Big]_{I}^{o} = -\frac{\pi}{2} \Delta a$$
$$\Delta U = \frac{K_{I}^{2}}{\mu} \frac{1-\upsilon^{*}}{2} \Delta a \qquad \Longrightarrow G_{I} = \lim_{\Delta a \to 0} \frac{\Delta U}{\Delta a} = \frac{K_{I}^{2}}{\mu} \frac{1-\upsilon^{*}}{2}$$
$$- \text{ pour un état de déformations planes } \left(\upsilon^{*} = \upsilon\right) : \quad G_{I}^{DP} = \frac{K_{I}^{2}}{E} \left(1-\upsilon^{2}\right)$$
$$- \text{ pour un état de contraintes planes } \left(\upsilon^{*} = \frac{\upsilon}{1+\upsilon}\right) \qquad G_{I}^{CP} = \frac{K_{I}^{2}}{E}$$
$$- \text{ ou encore } G_{I} = \frac{K_{I}^{2}}{E'} \quad \text{avec} \quad \begin{cases} E' = E \quad \text{en CP} \\ E' = E/(1-\upsilon^{2}) \quad \text{en DP} \end{cases}$$

Lorsqu'on soumet un lot d'éprouvettes à des sollicitations cycliques, d'amplitude et de fréquence fixées, on obtient une courbe (en échelle semi-logarithmique) présentant la contrainte alternée en fonction du nombre de cycles à rupture, qui a l'allure suivante:

Plusieurs représentations de la courbe AB ont été proposées pour la construction du diagramme d'endurance de Haig. Ces représentations empiriques nécessitent la connaissance de la limite d'endurance à $\sigma_m = 0$, de la limite d'élasticité σ_E (appelée aussi R_e) et de la résistance ultime à la traction R_m (ou σ_u) du matériau :

Lorsqu'un élément de structure est soumis à un chargement d'amplitude constante, de contrainte $\Delta \sigma$ ou de déformation plastique $\Delta \varepsilon_p$, les courbes de Wöhler ou de Manson-Coffin fournissent directement sa durée de vie.

Si en revanche l'amplitude de chargement varie au cours du temps, la façon classique d'aborder le problème consiste à définir l'endommagement associé à chaque amplitude

Le dommage élémentaire D_i sous amplitude constante ($\Delta \sigma_i$ ou $\Delta \varepsilon_i$) est défini par la relation suivante :

TD14 : Calcul de durée de vie en fatigue à partir de la courbe de Wöhler

Un élément de structure subit un chargement cyclique pour amorcer une fissure détectable par les moyens de CND. La courbe de Wöhler à l'amorçage à contrainte moyenne $\sigma_m = 0$ et à amplitude de contrainte σ_a fixée est donnée par : N = A = 10^8 et $\sigma_a = 200 M R_a$

$$N = \frac{1}{\left(\sigma_a - \sigma_D\right)^2} \quad \text{avec } A = 10^8 \text{ et } \sigma_D = 200MPa$$

Déterminer les nombres de cycles à l'amorçage pour des amplitudes de contraintes $\sigma_1 = 300MPa$ et $\sigma_2 = 250MPa$. En déduire le nombre de cycles à l'amorçage si l'élément de structure est soumis à un spectre de charge constitué de deux cycles d'amplitude σ_1 et 3 cycles d'amplitude σ_2 . Calculer le nombre de cycles à l'amorçage si l'amplitude augmente progressivement :

• Les nombres de cycles N_1 et N_2 nécessaires pour amorcer une fissure aux amplitudes σ_1 et σ_2 , se déduisent directement de la courbe de Wöhler :

$$N_{1} = \frac{A}{(\sigma_{1} - \sigma_{D})^{2}} = \frac{10^{8}}{100^{2}} = 10^{4} cycles \qquad N_{2} = \frac{A}{(\sigma_{2} - \sigma_{D})^{2}} = \frac{10^{8}}{50^{2}} = 4 \cdot 10^{4} cycles$$

• Le spectre constitué de 2 cycles σ_1 et 3 cycles σ_2 engendre un endommagement élémentaire $D_i = 2/N_1 + 3/N_2$. Si N_s est le nombre de spectres à l'amorçage, on a d'après la règle de cumul linéaire de Miner :

$$\sum D_i = N_s \cdot D_i = 1 \qquad \Rightarrow N_s = \frac{1}{2/N_1 + 3/N_2} = 3636 \text{ spectres}$$

Chaque spectre étant constitué de 5 cycles, il vient $N_{cycles} = 5N_s = 18182cycles$

• Pour le chargement croissant $\sigma_i = \sigma_D + \beta N_i$, l'endommagement élémentaire est : $dD_i = \frac{dN_i}{N_i} = \frac{d\sigma_i}{\beta N_i}$ où $N_i = \frac{A}{(\sigma_i - \sigma_D)^2}$ est le nombre de cycles à l'amorçage à σ_i Selon la règle de Miner, on a à l'amorçage $\int \frac{dN_i}{N_i} = 1$ soit : $\int_{\sigma_D}^{\sigma^*} \frac{(\sigma_i - \sigma_D)^2 d\sigma_i}{\beta A} = 1 \Rightarrow \sigma^* = (3\beta A)^{1/3} + \sigma_D \approx 344MPa$ σ^* est l'amplitude de contrainte atteinte au moment de l'amorçage. Le nombre de cycles N^* à l'amorçage est alors donné par : $N^* = \frac{\sigma^* - \sigma_D}{\beta} = 14422cycles$

A. Zeghloul

CFMR Application de la MLR à la fatigue des matériaux 31

La manière la plus simple de représenter la progression des fissures, consiste à rapporter leur longueur a en fonction du nombre de cycles N subit par l'éprouvette d'essai. La description de la vitesse de fissuration da/dN en fonction de a est une autre approche.

La figure ci-dessous donne un exemple de résultats issus de ces deux approches pour des essais à amplitudes différentes (σ_1 et σ_2) mais à même rapport de charge $R = \sigma^{\min} / \sigma^{\max}$.

La figure précédente montre que les vitesses de fissuration en fonction de l'amplitude ΔK du FIC sont décrites par une courbe unique pour deux essais effectués à même rapport de charge *R* mais à des amplitudes de contraintes σ_1 et σ_2 différentes.

Ce résultat permet d'énoncer le principe de similitude relatif au FIC : lorsque deux fissures sollicitées à même rapport de charge, sont soumises à la même amplitude ΔK du FIC, les vitesses de fissuration sont alors les mêmes.

Le rapport de charge est défini par :

$$R = \frac{\sigma_{\min}}{\sigma_{\max}} = \frac{K_{\min}}{K_{\max}} \text{ avec } K_{\max} = \sigma_{\max} \sqrt{\pi a} f(a/W) \text{ et } K_{\min} = \sigma_{\min} \sqrt{\pi a} f(a/W)$$

f(a/W) est la fonction complaisance de l'éprouvette d'essai

$$\Delta K = K_{\max} - K_{\min} = K_{\max} (1 - R) \implies K_{\max} = \frac{\Delta K}{1 - R} \text{ et } K_{\min} = \frac{R \Delta K}{1 - R}$$

On peut donc écrire :

 $\frac{da}{dN} = f(K_{\max}, K_{\min})$ ou $\frac{da}{dN} = f(\Delta K, R)$

La valeur de ΔK_{seuil} varie avec R et le milieu environnant. La relation empirique la plus utilisée pour décrire ces variations est de la forme :

 $\Delta K_{seuil} = (1-R)^{\gamma} \Delta K_0$ Relation de Klesnil et Lucas

Où ΔK_0 est la valeur seuil pour R=0. L'exposant γ est compris entre 0 et 1 : il est proche de 1 lorsque l'essai de fatigue est conduit dans des environnements agressifs et proche de 0 pour les milieux inertes.

Le domaine O des vitesses moyennes, obtenu par des essais à ΔK croissant : la vitesse de fissuration dans ce domaine est le plus souvent décrite par la relation empirique de Paris :

$$\frac{da}{dN} = C\left(\Delta K\right)^m$$

C et m sont des constantes qui dépendent du matériau, du milieu environnant et du rapport de charge R.

Le domaine

 des vitesses très élevées où les valeurs de K_{max} se rapprochent de la ténacité K_c du matériau.

Endommagement en propagation par fatigue

Lorsqu'un élément de structure fissuré est soumis à un chargement d'amplitude de contrainte constante $\Delta \sigma$, la durée de vie est calculée par une relation de type :

$$N_f = \int_{a_0}^{a_c} \frac{da}{C\Delta K^m}$$
 où $\Delta K = \Delta \sigma \sqrt{\pi a} f(a/W)$

Si l'élément est soumis à un spectre de charge comportant plusieurs amplitudes $\Delta \sigma_i$, on procède de la façon suivante :

On calcule l'accroissement de longueur de fissure Δa_i dû à chaque amplitude Δσ_i appliquée pendant ΔN_i cycles, soit :

$$\Delta a_i = C \left(\Delta K_i \right)^m \Delta N_i = C \left(\Delta \sigma_i \sqrt{\pi a_i} f(a_i / W) \right)^m \Delta N_i$$

Le nombre de cycles $\Delta N_{\text{spectre}}$ subis pendant une période du spectre de charge et l'accroissement de longueur de fissure $\Delta a_{\text{spectre}}$ correspondant, sont donnés par :

$$\Delta N_{spectre} = \sum_{i} \Delta N_{i} \quad \text{et} \quad \Delta a_{spectre} = \sum_{i} \Delta a_{i}$$

L'accroissement de longueur de fissure $\Delta a_{\text{spectre}}$ reste en général faible par rapport à la longueur de fissure a, si bien que l'on peut déterminer la vitesse moyenne da/dN_{spectre} sur le spectre de charge :

$$\frac{da}{dN}\Big)_{spectre} = \frac{\Delta a_{spectre}}{\Delta N_{spectre}} = \frac{\sum_{i} \Delta a_{i}}{\sum_{i} \Delta N_{i}} = \frac{\sum_{i} C\left(\Delta \sigma_{i} \sqrt{\pi a} f(a/W)\right)^{m} \Delta N_{i}}{\sum_{i} \Delta N_{i}}$$
$$\Rightarrow \frac{da}{dN}\Big)_{spectre} = C\left(\sqrt{\pi a} f(a/W)\right)^{m} \frac{\sum_{i} (\Delta \sigma_{i})^{m} \Delta N_{i}}{\sum \Delta N_{i}}$$

Ce calcul repose sur l'utilisation d'une loi de cumul linéaire (de type Miner) des accroissements élémentaires Δa_i de fissure.

On calcule ensuite la durée de vie en intégrant la relation précédente.

A. Zeghloul CFMR Application de la MLR à la fatigue des matériaux 41

Lorsque le spectre de chargement n'est pas décomposable en cycles à $\Delta\sigma$ fixée, on utilise une approche, proposée par Barsom*, qui consiste à relier la vitesse de propagation da/dN à une amplitude du facteur d'intensité des contraintes ΔK_{mS} moyennée (moyenne des carrés des contraintes) sur une période du spectre de N_s cycles : $\Delta K_{mS} = \frac{\sigma_{mS}^{\max} - \sigma_{mS}^{\min}}{\Delta \sigma_{mS}} \sqrt{\pi a} f(a/W)$ $\begin{cases} \sigma_{mS}^{\max} = \sqrt{\frac{1}{N_s} \sum_{1}^{N_s} \sigma_{\max}^2} \\ \sigma_{mS}^{\min} = \sqrt{\frac{1}{N_s} \sum_{1}^{N_s} \sigma_{\min}^2} \end{cases}$ avec N_s On détermine, à partir de ces contraintes, R_{mS} le rapport de charge moyen sur le spectre : $\Rightarrow \frac{da}{dN} = C \left(\Delta K_{mS} \right)^m \quad \text{et on calcule } N_f \text{ par intégration}$ $R_{mS} = \frac{\sigma_{mS}}{\sigma_{mS}}$ ^{*}J.M. Barsom, ASTM STP 595, p. 217, 1976 CFMR Application de la MLR à la fatigue des matériaux 42 A. Zeghloul

TD15 : Calcul de durée de vie en fatigue à partir des courbes de propagation

1- Dans un élément de structure en acier de ténacité $K_{IC}=70MPa\sqrt{m}$, les essais de propagation, à partir d'une longueur initiale $a_0=0,2mm$, ont donné les résultats suivants :

$$\frac{da}{dN} = 7,72 \cdot 10^{-11} \Delta K_R^{2.3} \text{ où } \Delta K_R = \frac{1-bR}{1-R} \Delta K \text{ avec} \begin{cases} b=0,2 \text{ à } R<0\\b=1 \text{ à } R \ge 0 \end{cases} \text{ avec} \begin{cases} da/dN \text{ en } m/cycle\\\Delta K \text{ en } MPa\sqrt{m} \end{cases}$$
Pour le calcul du FIC, on adopte la relation $K = \sigma\sqrt{\pi a}$
Un lot d'éléments identiques subissent, après amorcage d'une fissure de longueur $a_{1.2}$

Un lot d'éléments identiques subissent, après amorçage d'une fissure de longueur a_0 , différents chargements. Déterminer la durée de vie N_p pour les chargements suivants :

• La durée de vie se calcule par intégration entre la longueur initiale
$$a_0 = 0, 2mm$$
 et une
longueur critique a_c qu'il convient de déterminer pour chaque chargement considéré :
 $K_{I_c} = \sigma_{\max} \sqrt{\pi a_c} = \frac{\Delta \sigma}{1-R} \sqrt{\pi a_c} \Rightarrow a_c = \frac{1}{\pi} \left(\frac{(1-R)K_{I_c}}{\Delta \sigma} \right)^2 \qquad \begin{array}{l} \Delta \sigma = 200MPa \cdot R = 0 & \Rightarrow a_c = 39,0mm, \\ \Delta \sigma = 360MPa \cdot R = -1 & \Rightarrow a_c = 48,1mm, \\ \Delta \sigma = 150MPa \cdot R = 0, 5 & \Rightarrow a_c = 17,3mm, \\ \Delta \sigma = 300MPa \cdot R = -0, 5 & \Rightarrow a_c = 39,0mm. \end{array}$
a $\Delta \sigma = 200MPa \cdot R = 0 \qquad \frac{da}{dN} = 7,72 \cdot 10^{-11} \left(200\sqrt{\pi a} \right)^{2,3} = C_1 a^{1,15}$ où $C_1 = 5,65 \cdot 10^{-5}$
 $N_p = \int_{0,210^{-3}}^{39,10^{-3}} \frac{da}{C_1 a^{1,15}} = \frac{1}{0,15C_1} \left(\frac{1}{(0,2 \cdot 10^{-3})^{0,15}} - \frac{1}{(39 \cdot 10^{-3})^{0,15}} \right) \Rightarrow N_p = 2,32 \cdot 10^5 cycles$
b $\Delta \sigma = 360MPa \cdot R = -1 \qquad \frac{da}{dN} = 7,72 \cdot 10^{-11} \left(0,6 \cdot 360\sqrt{\pi a} \right)^{2,3} = C_2 a^{1,15}$
où $C_2 = 6,74 \cdot 10^{-5}$
 $N_p = \frac{1}{0,15C_2} \left(\frac{1}{(0,2 \cdot 10^{-3})^{0,15}} - \frac{1}{(48,1 \cdot 10^{-3})^{0,15}} \right) \Rightarrow N_p = 1,99 \cdot 10^5 cycles$

c - 1 cycle
$$\Delta \sigma = 200MPa - R = 0$$
 suivi 2 cycles $\Delta \sigma = 360MPa - R = -1$; on calcule la vitesse moyenne sur le spectre, soit :

$$\frac{da}{dN} \Big|_{moy} = 7,72 \cdot 10^{-11} \left(\frac{200^{2.3} + 2(0, 6 \cdot 360)^{2.3}}{3} \right) \pi^{1.15} a^{1.15} = C_3 a^{1.15}$$
 où $C_3 = 6,37 \cdot 10^{-5}$
 $N_P = \frac{1}{0,15C_3} \left(\frac{1}{(0,2 \cdot 10^{-3})^{0.15}} - \frac{1}{(39 \cdot 10^{-3})^{0.15}} \right) \qquad \Rightarrow N_P = 2,05 \cdot 10^5 \text{ cycles}$
d - 3 cycles $\Delta \sigma = 150MPa - R = 0,5$ suivis de 5 cycles $\Delta \sigma = 300MPa - R = -0,5$
 $\frac{da}{dN} \Big|_{moy} = 7,72 \cdot 10^{-11} \left(\frac{3 \cdot 150^{2.3} + 5(\frac{1,1}{1,5} \cdot 300)^{2.3}}{8} \right) \pi^{1.15} a^{1.15} = C_4 a^{1.15}$ où $C_4 = 5,49 \cdot 10^{-5}$
 $N_P = \frac{1}{0,15C_4} \left(\frac{1}{(0,2 \cdot 10^{-3})^{0.15}} - \frac{1}{(17,3 \cdot 10^{-3})^{0.15}} \right) \qquad \Rightarrow N_P = 2,13 \cdot 10^5 \text{ cycles}$

2- La propagation en fatigue dans l'acier de l'exemple précédent est plus rapide pour les fissures courtes (0,2mm < a < 1mm). La loi de fissuration pour le régime fissures courtes (FC) est :

$$\frac{da}{dN}\Big|_{FC} = 10^{-9} \left(\Delta K_R^{FC}\right)^2 \quad \text{avec} \quad \Delta K_R^{FC} = \left(\frac{\Delta K}{1 - cR}\right) \text{ et } \begin{cases} c = 1 \text{ à } R < 0\\ c = 0 \text{ à } R \ge 0 \end{cases}$$

Mêmes questions que celles de l'exemple 1-

 $a - \Delta \sigma = 200MPa - R = 0$ $b - \Delta \sigma = 360MPa - R = -1$ c - 1 cycle $\Delta \sigma = 200MPa - R = 0$ suivi 2 cycles $\Delta \sigma = 360MPa - R = -1$ d - 3 cycles $\Delta \sigma = 150MPa - R = 0,5$ suivis de 5 cycles $\Delta \sigma = 300MPa - R = -0,5$

a-
$$\Delta \sigma = 200MPa - R = 0$$
 $\frac{da}{dN} \bigg|_{FC} = 10^{-9} \left(200\sqrt{\pi a} \right)^2 = C_1 a$ où $C_1 = 1, 26 \cdot 10^{-4}$
 $N_P = \int_{0,210^{-3}}^{110^{-3}} \frac{da}{C_1 a} + \int_{110^{-3}}^{39\cdot10^{-3}} \frac{da}{C_1 a^{1.15}} = \frac{1}{C_1} \ln \frac{1}{0,2} + \frac{1}{0,15C_1} \left(\frac{1}{\left(1 \cdot 10^{-3} \right)^{0.15}} - \frac{1}{\left(39 \cdot 10^{-3} \right)^{0.15}} \right)$
 $\Rightarrow N_P = 1,53 \cdot 10^5 cycles$

b-
$$\Delta \sigma = 360MPa - R = -1$$
 $\frac{da}{dN} \Big|_{FC} = 10^{-9} \left(\frac{360}{2}\sqrt{\pi a}\right)^2 = C_2 a \text{ où } C_2 = 1,02 \cdot 10^{-4}$
 $N_p = \frac{1}{C_2} \ln \frac{1}{0,2} + \frac{1}{0,15C_2} \left(\frac{1}{\left(1 \cdot 10^{-3}\right)^{0.15}} - \frac{1}{\left(48,1 \cdot 10^{-3}\right)^{0.15}}\right) \implies N_p = 1,39 \cdot 10^5 \text{ cycles}$

c- 1 cycle $\Delta \sigma = 200MPa \cdot R = 0$ suivi 2 cycles $\Delta \sigma = 360MPa \cdot R = -1$; on calcule la vitesse moyenne sur le spectre pour les deux lois de propagation (fissures courtes et longues), soit :

$$\frac{da}{dN} \int_{moy}^{FC} = 10^{-9} \left(\frac{200^2 + 2(360/2)^2}{3} \right) \pi a = C_3 a \text{ où } C_3 = 1, 10 \cdot 10^{-4}$$

$$N_P = \frac{1}{C_3} \ln \frac{1}{0, 2} + \frac{1}{0, 15C_3} \left(\frac{1}{\left(1 \cdot 10^{-3}\right)^{0.15}} - \frac{1}{\left(39 \cdot 10^{-3}\right)^{0.15}} \right) \qquad \Longrightarrow N_P = 1, 39 \cdot 10^5 \text{ cycles}$$
A. Zeghloul CFMR Application de la MLR à la fatigue des matériaux 51

d. 3 cycles
$$\Delta \sigma = 150MPa \cdot R = 0,5$$
 suivis de 5 cycles $\Delta \sigma = 300MPa \cdot R = -0,5$

$$\frac{da}{dN} \int_{may}^{FC} = 10^{-9} \left(\frac{3 \cdot 150^2 + 5(300/1,5)^2}{8} \right) \pi a = C_4 a \text{ où } C_4 = 1,05 \cdot 10^{-4}$$

$$N_P = \frac{1}{C_4} \ln \frac{1}{0,2} + \frac{1}{0,15C_4} \left(\frac{1}{(1 \cdot 10^{-3})^{0.15}} - \frac{1}{(17,3 \cdot 10^{-3})^{0.15}} \right) \implies N_P = 1,34 \cdot 10^5 \text{ cycles}$$

$$A = 0$$